SMOTEFUNA: Synthetic Minority Over-Sampling Technique Based on Furthest Neighbour Algorithm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SMOTE: Synthetic Minority Over-sampling Technique

An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of “normal” examples with only a small percentage of “abnormal” or “interesting” examples. It is also the case that the cost of misclassifying an abnormal (i...

متن کامل

ovarian cancer classification using hybrid synthetic minority over-sampling technique and neural network

every woman is at risk of ovarian cancer; about 90 percent of women who develop ovarian cancer are above 40 years of age, with the high number of ovarian cancers occurring at the age of 60 years and above. early and correct diagnosis of ovarian cancer can allow proper treatment and as a result reduce the mortality rate. in this paper, we proposed a hybrid of synthetic minority over-sampling tec...

متن کامل

An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique

Abstract—Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalance...

متن کامل

Blending Propensity Score Matching and Synthetic Minority Over-sampling Technique for Imbalanced Classification

Real world data sets often contain disproportionate sample sizes of observed groups making the task of prediction algorithms very difficult. One of the many ways to combat inherit bias from class imbalance data is to perform re-sampling. In this paper we discuss two popular re-sampling approaches proposed in literature, Synthetic Minority Over-sampling Technique (SMOTE) and Propensity Score Mat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.2983003